

Lunar Plasma Wake

Halekas et al., 2005

Surface Charging

Measuring Lunar Potentials

Reflected
Secondaries
Lost to Surface

 Fit to measured electron distribution to determine surface magnetic and electric fields

Pitch angle = angle between v and B Plasma Electrons Follow Magnetic Field Lines and Reflect from E & B **Secondary Electrons Accelerated Upward** Downward Electric Field

Negative Surface Charge Layer

Understanding Lunar Potential Measurements

Measured Potential Drops in the Solar Wind and

Potential Drop
Time Series

Potential Drop Vs. Solar Zenith Angle

Wake Contribution

- Modified selfsimilar expansion model [Halekas et al., 2005] predicts:
 - Density
 - Temperature
 - Potential drop between spacecraft and surface due to wake potentials

Surface Charging Contribution

Too much secondary emission ($\delta = 1.5$)

No negative surface charging

Surface Charging Contribution

Too little secondary emission ($\delta = 1.0$)

Too large negative surface charging

Surface Charging Contribution

Just right secondary emission ($\delta = 1.2$)

Getting closer....

From Macro to Micro-Scale

Conclusions

- On a global scale, both wake and surface electric fields important near the terminator and polar regions
 - More work to do...

- A challenge for the future:
 - Moving from macro to micro-scale